Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria.

نویسندگان

  • Xi-Xiang Yin
  • Jian Chen
  • Jie Qin
  • Guo-Xin Sun
  • Barry P Rosen
  • Yong-Guan Zhu
چکیده

Arsenic (As) is a pervasive and ubiquitous environmental toxin that has created worldwide human health problems. However, there are few studies about how organisms detoxify As. Cyanobacteria are capable of both photolithotrophic growth in the light and heterotrophic growth in the dark and are ubiquitous in soils, aquatic systems, and wetlands. In this study, we investigated As biotransformation in three cyanobacterial species (Microcystis sp. PCC7806, Nostoc sp. PCC7120, and Synechocystis sp. PCC6803). Each accumulated large amounts of As, up to 0.39 g kg(-1) dry weight, 0.45 g kg(-1) dry weight, and 0.38 g kg(-1) dry weight when treated with 100 μM sodium arsenite for 14 d, respectively. Inorganic arsenate and arsenite were the predominant species, with arsenate making up >80% of total As; methylated arsenicals were detected following exposure to higher As concentrations. When treated with arsenate for 6 weeks, cells of each cyanobacterium produced volatile arsenicals. The genes encoding the As(III) S-adenosylmethionine methyltransferase (ArsM) were cloned from these three cyanobacteria. When expressed in an As-hypersensitive strain of Escherichia coli, each conferred resistance to arsenite. Two of the ArsM homologs (SsArsM from Synechocystis sp. PCC6803 and NsArsM from Nostoc sp. PCC7120) were purified and were shown to methylate arsenite in vitro with trimethylarsine as the end product. Given that ArsM homologs are widespread in cyanobacteria, we propose that they play an important role in As biogeochemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomethylation and volatilization of arsenic by the marine microalgae Ostreococcus tauri.

Ostreococcus tauri is a marine green microalga, recognized as a model organism of the marine phytoplankton assemblage and widely distributed from coastal to oligotrophic waters. This study showed it could tolerate both arsenite and arsenate concentrations of up to 100μM, and cellular As concentration increased significantly (P<0.01) with increasing concentration of As(V) in the medium (0-50μM)....

متن کامل

Biomethylation and Volatilization of Arsenic by Model Protozoan Tetrahymena pyriformis under Different Phosphate Regimes

Tetrahymena pyriformis, a freshwater protozoan, is common in aquatic systems. Arsenic detoxification through biotransformation by T. pyriformis is important but poorly understood. Arsenic metabolic pathways (including cellular accumulation, effluxion, biomethylation, and volatilization) of T. pyriformis were investigated at various phosphate concentrations. The total intracellular As concentrat...

متن کامل

Antimicrobial activity of Cyanobacteria isolated from hot spring of Geno

Cyanobacteria, the blue green algae are one of the most diverse groups of Gram-negative photosynthetic prokaryotes widely distributed throughout the world. Cyanobacteria are known to produce a wide range of secondary metabolites with various biological actions. The aim of this study was to test extracts from various cyanobacteria isolated from Geno hot spring, Bandar Abbas (Iran) against a dive...

متن کامل

Arsenic methylation and volatilization by arsenite S-adenosylmethionine methyltransferase in Pseudomonas alcaligenes NBRC14159.

Inorganic arsenic (As) is highly toxic and ubiquitous in the environment. Inorganic As can be transformed by microbial methylation, which constitutes an important part of the As biogeochemical cycle. In this study, we investigated As biotransformation by Pseudomonas alcaligenes NBRC14159. P. alcaligenes was able to methylate arsenite [As(III)] rapidly to dimethylarsenate and small amounts of tr...

متن کامل

The role of phosphorus in the metabolism of arsenate by a freshwater green alga, Chlorella vulgaris.

A freshwater microalga, Chlorella vulgaris, was grown in the presence of varying phosphate concentrations (<10-500μg/L P) and environmentally realistic concentrations of arsenate (As(V)) (5-50μg/L As). Arsenic speciation in the culture medium and total cellular arsenic were measured using AEC-ICP-MS and ICP-DRC-MS, respectively, to determine arsenic biotransformation and uptake in the various p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 156 3  شماره 

صفحات  -

تاریخ انتشار 2011